Cours de physiologie

Contrôle, régulation et homéostasie

Illustration, source Wikipedia

MOTS CLES: constantes physiologiques, Thermorégulation, pH, équilibre hydro électrolytique, compartiments liquides.

La fixité du milieu intérieur est la condition d'une vie libre et indépendante." (CLAUDE BERNARD, Les phénomènes de la vie, 1878).

Le corps humain est constitué de milliards de cellules qui travaillent ensemble pour maintenir la totalité de l'organisme en vie. Malgré les différences entre les cellules par leurs structures et leurs fonctions, elles présentent toutes des besoins métaboliques similaires (apport d'oxygène et de nutriments, élimination des déchets ...). Le maintien de la stabilité des paramètres physico-chimiques du milieu intérieur dans lequel les cellules peuvent survivre et fonctionner est d'une nécessité cruciale.

du grec, homoios (ὁμοιος): le même et stasis (στάσις): état ou posture.

A RETENIR

Concept d'homéostasie :

L'homéostasie est le résultat obtenu par la mise en jeu de différents types de mécanismes qui assurent l'équilibre et la constance du milieu intérieur. Les paramètres du milieu intérieur sont maintenus constants et ceux malgré les

modifications constamment induites par l'environnement extérieur ou par les oscillations endogènes.

Ainsi, les paramètres du milieu intérieur ne varient que dans d'étroites limites dites *valeurs physiologiques*.

Cette stabilité repose sur des *mécanismes régulateurs* qui agissent sur un certain nombre de *variables régulées* (par ex. l'acidité (Ph), la température T°, la glycémie, l'équilibre hydro électrolytique, la pression artérielle, (TA) les gaz du sang,(pO² pCO²) etc.).

Chaque fois que sous l'influence de variations du milieu extérieur, une variable du milieu intérieur s'écarte de sa valeur normale, s'enclenchent des mécanismes régulateurs qui tendent à ramener cette variable à la valeur fixe consignée.

QUELQUES CONSTANTES PHYSIOLOGIQUES

- TEMPERATURE :37℃
- <u>pH</u>:7.3
- Glycémie: 1g/l
- Pression sanguine artérielle
 - -Pression diastolique 8 cm de Hg (cm de mercure = Hg)
 - -Pression systolique 12 cm de Hg
- Osmolarité (pression osmotique) : elle est exprimée en mosm/l de plasma
- Volémie : 5-6 litres de sang

I HOMEOSTASIE THERMIQUE (thermorégulation-Homéothermie)

La température corporelle est un des paramètres de l'organisme qui doit être finement contrôlé.

En effet, cette température se maintient normalement dans un intervalle étroit, entre 35,6 et 37,8°C, malgré les variations importantes de la température de l'air ambiant. (capacité d'homéothermie)

Cependant cette température n'est pas la même dans tout l'organisme : la température centrale (37°C) est celle des organes situés dans les cavités crânienne, thoracique et abdominale ; elle est plus élevée que la température de surface (31 à 28 °C) c'est-à-dire celle de la peau et des extrémités où se font les échanges de chaleur avec le milieu extérieur).

A RETENIR

Pourquoi l'homéostasie thermique est-elle importante ?

Les réactions cellulaires sont catalysées par des enzymes. L'activité catalytique de ces enzymes est optimale autour de 37°C. Une augmentation de 1°C de la température moyenne permet une accélération de 10% de l'activité enzymatique. Cependant, au-delà de cette limite supérieure, les molécules enzymatiques se dénaturent et perdent leur fonction. Des convulsions apparaissent à 41°C et la survie n'est pas possible au-delà de 43°C.

Par contre, l'organisme résiste mieux à l'hypothermie. Ce phénomène est d'ailleurs exploité pour certaines interventions chirurgicales.

Comment la température corporelle est-elle régulée ?

La température corporelle résulte de <u>l'équilibre entre la production de chaleur et les déperditions de chaleur.</u>

La thermogenèse (production de chaleur) provient du métabolisme cellulaire.

Ce sont donc les organes les plus actifs qui produisent le plus de chaleur : au repos, ce sont le foie, le cœur, l'encéphale et les glandes endocrines. Au cours d'une activité physique, les muscles squelettiques produisent jusqu'à 40 fois plus de chaleur que les autres organes.

La déperdition de chaleur (thermolyse)à pour but de maintenir constante la température interne elle est assurée par différents processus : le rayonnement, la conduction et la convection et l'évaporation.

<u>Le rayonnement</u>, (ou radiation)

sous forme d'ondes infrarouges, correspond à environ 50% de la déperdition de chaleur. Comme un radiateur, le corps humain cède de la chaleur à l'air environnant lorsque celui-ci est plus froid. À l'inverse, le corps peut se réchauffer en captant la chaleur du soleil.

La conduction et la convection représentent entre 15 et 20% de la déperdition de chaleur. La conduction est le transfert de chaleur par contact, entre la surface du corps et l'air. L'air chauffé est ensuite soumis à la convection, c'est-à-dire au mouvement des molécules : les molécules chauffées sont remplacées par des molécules froides qui se réchauffent à leur tour, etc... Ce phénomène est amplifié par le vent ou un ventilateur qui accélèrent le mouvement de l'air.

<u>L'évaporation</u>: l'eau se transforme en vapeur d'eau à la surface du corps, en absorbant une grande quantité de chaleur. Ce phénomène est nettement accentué par certains états émotionnels et surtout par l'activité physique, et se manifeste alors par la **transpiration**.

Les mécanismes de la thermorégulation sont sous le contrôle de l'hypothalamus La moelle épinière est conductrice sensitive : sudation et reflexes

Il EQUILIBRE DU GLUCOSE sera traité avec le diabète

III pH, acidité, gaz du sangs, sera traité dans appareil respiratoire et sang

IV EQUILIBRE HYDRO ELECTROLYTIQUE

A-Les compartiments liquidiens

En moyenne, l'eau représente 60% du poids corporel.

Ex : Homme de 60 kg = 36 L d'eau

40% sont situés dans le secteur intra cellulaire (SIC)

20% sont situés dans le secteur extracellulaire (SEC) (qui lui-même est composé de deux sous compartiments :

- 1) le secteur interstitiel, (entre les cellules) : 15%
- 2) le secteur vasculaire (l'intérieur des veines et des artères) :5%

La teneur en eau est + faible chez la femme et diminue avec l'âge.

Liquide = eau + solutés

Les solutés sont formés de :

- Composés non dissociables (glucose, urée...)
- Composés dissociés, **les électrolytes** (cations (+), anions (-)...) ; les protéines sont considérées comme des anions.

- · <u>Composition du LIC, liquide intra cellulaire</u>
- le K+ est le cation majoritaire (150mEq/L), on trouve aussi du Mg++(34mEq/L)
- Phosphates (130mEq/L), protéines (54mEq/L)

· Composition du LEC, liquide extra cellulaire

PLASMA

- Le sodium est le cation majoritaire (140mEq/L)
- Cl⁻ (103 mEq/L) et HCO3⁻ (25mEq/L), l'ion bicarbonate, sont les anions majoritaires

Les solutés sont formés de :

- **Composés non dissociables** (glucose, urée...)
- Composés dissociés, les électrolytes (cations, anions...); les protéines sont considérées comme des anions.

B Anomalies du bilan H2O et NA+ (eau et sel)

On peut assister soit à des déshydratations soit à des hyper hydratations

Objectif : comprendre la logique des mécanismes

		Mécanisme	Traduction biologique	Cause	Les signes (que voit-on ?)
DEC	Déshydratation extra cellulaire	Diminution du volume dans le SEC dû à une perte de NA+et d'eau		 Rénale /extra rénale Digestive diarrhées profuses Aspirations digestives non compensées Abus de laxatifs Cutanées Sudations importantes Médicaments diurétiques 	 Hypotension orthostatique, Pli cutané Perte de poids (eau)
DIC	Deshydratation intra cellulaire	Mouvement d'eau des cellules (SIC) vers le SEC secondaire à une hyper osmolarité plasmatique (=bilan hydrique négatif)=déficit hydrique	Hyper natrémie (augmentation du NA+ dans le sang)	Si :perte d'eau non compensée (Si : apport massif de NA+ accidentel Si : déficit d'apport d'eau Si coup de chaleur ou brûlure	 Soif perte de poids troubles neurologiques

HEC	Hyperhydratation extra cellulaire	Augmentation du volume extracellulaire en particulier du secteur interstitiel	Rétention de Nacl et d'eau Bilan sodé positif	Hypoprotidémies suite à des dénutritions Vasodilatations	Du – grave au + grave Oedèmes périphériques généralisés, (signe du godet) prise de poids (eau) au niveaux des séreuses*: (épanchement péricardique, pleural, ascite) -au niveau pulmonaire (oedème aigu pulmonaire =OAP)
HIC	Hyperhydratation intra cellulaire	Augmentation du volume intra cellulaire dû à un transfert d'eau du SEC vers le SIC du fait d'une hypo osmolarité plasmatique	Hypo natrémie (baisse du NA+ dans le sang)	 Si :Ingestion d'eau supérieure aux capacités d'excrétions physiologique Ex : potomanie Et/ou : Si :les apports azotés sont trop faibles//apports hydriques Si :le seuil de déclenchement de la sécrétion d'ADH (hormone anti diurétique est perturbé) Si l'excrétion d'eau est diminué (soit hypo volémie, soit syndrome néphrotique) 	 Signes neurologiques (confusion, coma) Prise de poids (eau)

ANNEXE DOCUMENTAIRE (c'est pour information)

Élément	Symbole chimique	% de la masse corporelle (approx.)*	Fonctions	
PRINCIPAUX	(96,1%)			
Oxygène	0	65,0	Constituent important des molécules organiques (qui contiennent du carbone) et inorganiques (qui ne contiennent pas de carbone); à l'état gazeux, il est essentiel à li production de l'énergie cellulaire (ATP)	
Carbone	C	18,5	Principal composant de toutes les molécules organiques, notamment des glucides, des lipides (matières grasses), des protéines et des acides nucléiques	
Hydrogène	н	9,5	Présent dans toutes les molécules organiques; sous forme d'ion (proton), sa concentration détermine le pH des liquides de l'organisme	
Azote	N	3,2	Présent dans les protéines et les acides nucléiques (matériel génétique)	
MOINS ABO	NDANTS (3,99	6)		
Calcium	Cı	1.5	Présent sous forme de sel dans les os et les dents; sous forme d'ion (Ca ^{2*}), il est nécessaire aux contractions musculaires, à la propagation de l'influx nerveux et à la coagulation du sang	
Phosphore	P	1,0	Constituant du phosphate de calcium, un sel présent dans les os et les dents ; égale ment présent dans les acides nucléiques et l'ATP	
Potassium	К	0,4	L'ion potassium (K ⁺) est l'ion positif (cation) le plus abondant dans les cellule nécessaire à la transmission de l'influx nerveux et à la contraction musculaire	
Soufre	S	0,3	Présent dans les protéines, notamment dans les protéines musculaires	
Sodium	Na	0,2	L'ion sodium (Na") est le principal ion positif des liquides extracellulaires (à l' rieur des cellules); important pour l'équilibre hydrique, la transmission de l'int nerveux et la contraction musculaire	
Chlore	a	0,2	L'ion chlorure (CIT) est l'ion négatif (anion) le plus abondant dans les liquides extracellulaires	
Magnésium	Mg	0,1	Présent dans les os; cofacteur important dans de nombreuses réactions métaboliques	
lode	1	0,1	Essentiel à la production des hormones thyroidiennes	
Fer	Fe	0,1	Constituant de l'hémoglobine (qui assure le transport de l'oxygéne dans les globule rouges du sang) et de certaines enzymes	
OLIGOÉLÉM	ENTS (MOINS	DE 0,01%)		
	MENTS (MOINS		; manganèse (Mn); molybdène (Mo); sélénium (Se); silicium (Si); étain (Sn); varia	

Vous trouverez à l'appendice E le tableau périodique des éléments où ceux-ci sont ordonnés par numéro atomique croissant. Pourcentage de la musse corporelle humide : incluant l'eou.